Z00

Z00-Project Documentation
Release 1.5

Z0O0O-Project team

November 17, 2018

CONTENTS

Introduction

1.1 Whatis ZOO-Project? e
1.2 ZOO-Projectcomponents e
1.3 OpenSource e
Z0OO-Project installation

2.1 Prerequisites e
22 Download
2.3 Installation on Unix/Linux
24 Installationon Debian / Ubuntu L e
25 InstallonOpenSUSE
2.6 InstallationonCentOS L e
2.7 Installationon Windows ™ L L
Z0O0O-Kernel

3.1 Whatis ZOO-Kernel ? e
3.2 ZOO-Kernel configuration
3.3 Optional MapServer support e
3.4 Optional Orfeo Toolbox support
3.5 Optional SAGA GISsupport
Z0OO0-Services

41 Whatare ZOO-Services ? o i e
42 ZOO-Service configurationfile L L o
43 DProcessprofilesregistry
44 Create your own ZOO-5Services i e
45 Translation Support
46 ZOOStatusService. e
47 Debugging ZOO SeIvices ottt
4.8 Available ZOO-Serviceso e
Z0OO0-API

51 Whatis ZOO-API? e
52 Using ZOO-API
53 ZOO-APICIasses v it e
54 Examples e
Z0OO-Client

6.1 Whatis ZOO-Client ? e
6.2 Using ZOO-Client e
6.3 Exampleapplication L

N /=

21
21

7 Contributor Guide 79

7.1 Howtocontribute ? e e e 79
72 Contributecode. L e e e e 80
7.3 Contribute documentation e e e e 82
74 Committer guidelines L 85
75 Release Procedure e e e e e e 87
7.6 Contribute translation L e e e 88
7.7 Listof contributors e e e 20

CHAPTER
ONE

INTRODUCTION

This is an introduction to the ZOO-Project! open source software documentation.

1.1 What is ZOO-Project ?

ZOO-Project” is a WPS (Web Processing Service) implementation written in C, Python and JavaScript. It is
an open source platform which implements the WPS 1.0.0° and WPS 2.0.0* standards edited by the Open
Geospatial Consortium® (OGC).

ZOO-Project® provides a developer-friendly framework for creating and chaining WPS compliant Web Ser-
vices. Its main goal is to provide generic and standard-compliant methods for using existing open source
librairies and algorithms as WPS. It also offers efficient tools for creating new innovative web services and
applications.

ZOO-Project” is able to process geospatial or non geospatial data online. Its core processing engine (aka
Z00-Kernel) lets you execute a number of existing ZOO-Services based on reliable software and libraries.
It also gives you the ability to create your own WPS Services from new or existing source code, which can
be written in seven different programming languages. That lets you compose or turn code as WPS Services
simply, with straightforward configuration and standard coding methods.

ZOO-Project® is very flexible with data input and output so you can process almost any kind of data stored
locally or accessed from remote servers and databases. ZOO-Project excels in data processing and integrates
new or existing spatial data infrastructures, as it is able to communicate with map servers and can integrate
webmapping clients.

1.2 ZOO-Project components

The ZOO-Project’ platform is made up of the following components:

® ZOO-Kernel: A WPS compliant implementation written in C offering a powerful WPS server able
to manage and chain WPS services. by loading dynamic libraries and code written in different lan-
guages.

Ihttp:/ /zoo-project.org

Zhttp:/ /zoo-project.org

Shttp:/ /www.opengeospatial.org/standards/wps/
4http:/ /www.opengeospatial.org/standards/wps/
Shttp:/ /www.opengeospatial.org/

Ohttp:/ /zoo-project.org

"http:/ /zoo-project.org

8http:/ /zoo-project.org

http:/ /zoo-project.org

http://zoo-project.org
http://zoo-project.org
http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org

Z0O0-Project Documentation, Release 1.5

e ZOO-Services: A growing collection of ready to use Web Processing Services built on top of reliable
open source libraries such as GDAL, GRASS GIS, OrfeoToolbox, CGAL and SAGA GIS.

® ZOO-API: A server-side JavaScript API for creating, chaining and orchestrating the available WPS
Services.

e ZOO-Client: A client side JavaScript API for interacting with WPS servers and executing standard
requests from web applications.

1.3 Open Source

ZOO-Project'’ is open source and released under the terms of the MIT/X-11'! license'? . ZOO-Project
activities are directed by the Project Steering Committee (PSC) and the software itself is being developed,
maintained and documented by an international community of users and developers (aka ZOO-Tribe'?).

Please refer to the ZOO-Project Contributor Guide if you want to participate and contribute. It is easy to get
involved on source code, documentation or translation. Everybody is welcome to join the ZOO-Tribe'*.

ZOO-Project is an incubating software at the Open Source Geospatial Foundation (OSGeo'®).

(%/0SGeo

Project in Incubation

Ohttp:/ /zoo-project.org

Uhttp:/ /opensource.org/licenses/MITlicense

12http: / / zoo-project.org/trac/browser/trunk/zoo-project/ LICENSE
Bhttp:/ /zoo-project.org/new / ZOO-Project/ ZO0O%20Tribe

http:/ /zoo-project.org/new / ZOO-Project/ ZOO%20Tribe /

5http:/ /zoo-project.org

6http:/ /osgeo.org

2 Chapter 1. Introduction

http://zoo-project.org
http://opensource.org/licenses/MITlicense
http://zoo-project.org/trac/browser/trunk/zoo-project/LICENSE
http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe
http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe/
http://zoo-project.org
http://osgeo.org

CHAPTER
TWO

ZOO-PROJECT INSTALLATION

The following sections will help you to install the ZOO-Project' Open WPS Platform on various operating
systems.

2.1 Prerequisites

2.1.1 Mandatory
The following libraries are required to install ZOO-Kernel. Please make sure they are available on your
system before anything else.
e autoconf (http://www.gnu.org/software/autoconf/)
o gettext (https://www.gnu.org/software/gettext/)
e cURL (http://curl.haxx.se)
¢ FastCGI (http:/ /www.fastcgi.com)
¢ Flex & Bison (http:/ /flex.sourceforge.net/ | http://www.gnu.org/software/bison/)
e libxml2 (http://xmlsoft.org)
® OpenSSL (http:/ /www.openssl.org)
* GDAL (http://gdal.org/)

Warning: Itis mandatory to install every library listed above before compiling and installing
Z00-Kernel

2.1.2 Optional

You may also consider the following optional libraries:

¢ MapServer (for ZOO-Kernel optional WMS, WES and WCS support) (http://mapserver.org)

Python (http://www.python.org)
PHP Embedded (for ZOO-Kernel optional PHP support) (http://www.php.net)

Java SDK (for ZOO-Kernel optional Java support) (http://java.sun.com)
¢ SpiderMonkey (for ZOO-Kernel optional Javascript support) (http:/ /www.mozilla.org/js/spidermonkey /

Thttp:/ /zoo-project.org

http://zoo-project.org
http://www.gnu.org/software/autoconf/
https://www.gnu.org/software/gettext/
http://curl.haxx.se
http://www.fastcgi.com
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://xmlsoft.org
http://www.openssl.org
http://gdal.org/
http://mapserver.org
http://www.python.org
http://www.php.net
http://java.sun.com
http://www.mozilla.org/js/spidermonkey/

Z0OO0-Project Documentation, Release 1.5

SAGA GIS (for ZOO-Kernel optional SAGA support) (http://www.saga-gis.org/en/index.html/)

OrfeoToolbox (for ZOO-Kernel optional OTB support) (https://www.orfeo-toolbox.org/)
GRASS GIS (for using it through WPSGrassBridge) (http://grass.osgeo.org)
PostgreSQL support activated in GDAL to Use a Database Backend (Optional)

2.2 Download

Several ways to download the ZOO-Project® source code are available and explained in this section.

Warning: The ZOO-Project svn is the place where developement happens. Checking out svn is the best
way to be always up-to-date.

2.2.1 ZOO-Project releases archives

Each new ZOO-Project® major release are available on the project official website as .zip and .tar.bz2
archives. Head to the Downloads* section to get the latest or older ZOO-Project releases.

Warning: Don’t use older versions of ZOO-Project if you want to use new features and avoid older
code issues. Prefer svn or github instead.

2.2.2 Z00-Project SVN

Download the latest” ZOO-Project® source code using the following svn command:

’svn checkout http://svn.zoo-project.org/svn/trunk zoo-src

Registered ZOO-Project developers would prefer the following;:

sed "s:\[tunnels\]:\[tunnels\]\nzoosvn = /usr/bin/ssh -p 1046:g" -i ~/.subversion/config
svn co svn+zoosvn://svn.zoo-project.org/var/svn/repos/trunk zoo-src

Note: The ZOO-Project svn server listens on the 1046 (1024+22) port (instead of 22 by default), so please
use a specific tunnel to access the svn server, as shown in the command above.

2.2.3 ZOO-Project Github

The ZOO-Project svn is mirrored in this Github repository” in case you would like to fork it.

Zhttp:/ /zoo-project.org

Shttp:/ /zoo-project.org

4http: / / zoo-project.org/site/Downloads
Shttp:/ /zoo-project.org/trac/browser /trunk
®http:/ /zoo-project.org

"https:/ / github.com/kalxas/zoo-project/

4 Chapter 2. ZOO-Project installation

http://www.saga-gis.org/en/index.html/
https://www.orfeo-toolbox.org/
http://grass.osgeo.org
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org/site/Downloads
http://zoo-project.org/trac/browser/trunk
http://zoo-project.org
https://github.com/kalxas/zoo-project/

Z0OO0-Project Documentation, Release 1.5

2.3 Installation on Unix/Linux

To build and install ZOO-Project on your Web Server you will need 4 steps :

Build cgic

Install ZOO-Kernel
Install ZOO-Services
Testing your installation

2.3.1 Build cgic

Run the following commands from the thirds/cgic directory to build the cgic library.

cd thirds/cgic
make

The cgic library originaly come from http://www.boutell.com/cgic.

Warning: You may need to edit the Makefile in case you are using a 64 bits platform for building and
your fcgi library is not located in /usr/1ib64.

2.3.2 Install ZOO-Kernel

For the impatient

Run the following commands from the directory where you Download and extracted the ZOO Kernel source
code in order to build the zoo_loader. cgi CGI program with default options.

cd zoo-project/zoo-kernel
autoconf

./configure

make

make install

This should produce executables for the zoo_loadercgi CGI program (located per default
in /usr/lib/cgi-bin/) and a shared library libzoo_service (located per default in
/usr/local/lib).

Warning: Edit ZOO-Kernel installation settings in the main. cfg file (set tmpPath and tmpUrl to fit
your web server configuration).

Configure options

This section provides information on ZOO-Kernel configure options. It is recommanded to also read the
Z200-Kernel configuration section for configuration technical details.

Here is the list of available options in the same order as returned by . /configure --help command:

2.3. Installation on Unix/Linux 5

http://www.boutell.com/cgic

Z0OO0-Project Documentation, Release 1.5

Specific CGI Directory
Specific main.cfg location (Optional)
Use a Database Backend (Optional)
YAML Support (Optional)
FastCGI Support (Required)
GDAL Support (Required)
GEOS Support (Optional)
CGAL Support (Optional)
MapServer Support (Optional)
XML2 Support (Required)
Python Support (Optional)

— Python Version
JavaScript Support (Optional)
PHP Support (Optional)
Java Support (Optional)
Perl Support (Optional)
Orfeo Toolbox Support (Optional)
SAGA GIS Support (Optional)
Translation support (Optional)

Specific CGI Directory

In the case your cgi-bin is not located in /usr/1ib/ as it is assumed per default, then you can specify a
specific target location by using the following option:

‘./configure -—with-cgi-dir=/Lbrary/WebServer/CGI-Executables

This way, when you will run the make install command, the ZOO-Kernel will be deployed in the spec-
ified directory (so, /Lbrary/WebServer/CGI-Executables” in this example).

Specific main.cfg location (Optional)

Per default, the ZOO-Kernel search for the main.cfg file from its installation directory but, in case you
want to store this file in another place, then you can use the ——with-etc-dir option so it will search for
themain.cfgfile in the sysconfdir directory.

For instance, you can define that the directory to store themain. cfg fileis the /etc/zoo-project direc-
tory, by using the following command:

./configure —--with-etc-dir=yes --sysconfdir=/etc/zoo-project

Use a Database Backend (Optional)

If you want to share the ongoing informations of running services between various ZOO-Kernel instances
then you should use this option: ——with-db-backend. This way, both the GetStatus, GetResult and Dis-
miss requests can be run from any host accessing the same database. Obviously, this will require that the
Z0OO0O-Kernel is able to access the Database server. To learn how to configure this connection and how to
create this database please refer to [1] and [2] respectively.

Note: By now, the ZOO-Kernel is not able to handle correctly the Dismiss request from any host. Never-

6 Chapter 2. ZOO-Project installation

Z0OO0-Project Documentation, Release 1.5

theless, it will provide valid response from any host, but only the host which is really handling the service
will be able to stop it and remove all the linked files.

To create a new database to be used by the ZOO-Kernel, you have to load the schema.sql® file. For instance,
you may run the following:

createdb zoo_project
psql zoo_project —-f zoo-project/zoo-kernel/sql/schema.sql

Note: You can choose another schema to store ZOO-Kernel sgecific informations. In such a case, you
would need to edit the schema.sq] file to uncomment line 33° and 34"

YAML Support (Optional)

If yaml . h file is not found in your /usr/include directory and 1ibyaml. so is not found in /usr/1lib,
a ——with-yaml option can be used to specify its location. For instance, if the headeer file lies in
/usr/local/include and the shared library is located in /usr/local/1lib, you may use the following
command:

$./configure --with-yaml=/usr/local

FastCGl Support (Required)

If your FastCGlI library is not available in the default search path, a ~—with-fastcgi option can be
used to specify its location. For instance, if 1ibfcgi.so lies in /usr/local/lib which is not in your
LD_SEARCH_PATH, you may use the following command:

$./configure —--with-fastcgi=/usr/local

GDAL Support (Required)

If gdal-config program is not found in your PATH, a ——with-gdal-config option can be used to specify
its location. For instance, if gdal-configliesin /usr/local/bin which is not in your PATH, you may
use the following command:

$./configure --with-gdal-config=/usr/local/bin/gdal-config

GEOS Support (Optional)

If geos—config program is not found in your PATH, a ——with-geosconfig option can be used to specify
its location. For instance, if geos—-configliesin /usr/local/bin which is not in your PATH, you may
use the following command:

$./configure --with-geosconfig=/usr/local/bin/geos-config

8http: / /zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel /sql/schema.sql
ghttp: / /zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel /sql/schema.sql#L33
10http: / / zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel /sql /schema.sql#L34

2.3. Installation on Unix/Linux 7

http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql#L33
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql#L34

Z0OO0-Project Documentation, Release 1.5

CGAL Support (Optional)

If CGAL/Delaunay_triangulation_2.h program is not found in your /usr/include direc-
tory, a ——with-cgal option can be used to specify its location. For instance, if the file lies in
/usr/local/include which is not in your PATH, you may use the following command:

$./configure —-with-cgal=/usr/local

MapServer Support (Optional)

In order to activate the WMS, WES and WCS output support using MapServer, the ~~with-mapserver
option must be used. The path to mapserver—config which is located in the source code of MapServer
must also be set, using the following command:

$./configure —--with-mapserver=/path/to/your/mapserver_config/

Read more about the Optional MapServer support.

XML2 Support (Required)

If xml2-config program is not found in PATH, a —with-xmil2config option can be used to specify its loca-
tion. For instance, if xml2-config is installed in /usr/local/bin which is not in PATH, you may use the
following command:

$./configure --with-xml2config=/usr/local/bin/xml2-config

Python Support (Optional)

The —-with-python=yes option is required to activate the ZOO-Kernel Python support, using the follow-
ing command:

’$./configure —--with-python=yes

This assumes that python-config is found in your PATH. If not, then you can specify the Python installation
directory using the following command (with Python installed in the /usr/local directory):

’$./configure —--with-python=/usr/local

Python Version If multiple Python versions are available and you want to use a specific one, then you
can use the ——with-pyvers option as shown bellow:

$./configure —--with-pyvers=2.7

JavaScript Support (Optional)

In order to activate the JavaScript support for ZOO-Kernel, the -~with-js=yes configure option must be
specified. If you are using a “Debian-like” GNU/Linux distribution then dpkg will be used to detect if the
required packages are installed and you don’t have to specify anything here. The following command is
only needed (assuming that js_api.h and libmozjs.so are found in default directories):

8 Chapter 2. ZOO-Project installation

Z0OO0-Project Documentation, Release 1.5

$./configure —--with-js=yes

If you want to use a custom installation of SpiderMonkey'! , or if you are not using a Debian packaging
system, then you'll have to specify the directory where it is installed. For instance, if SpiderMonkey is in
/usr/local/, then the following command must be used:

$./configure --with-js=/usr/local

PHP Support (Optional)

The —-with-php=yes option is required to activate the ZOO-Kernel PHP support’, using the following
command:

’$./configure —--with-php=yes

This assumes that php-config can be found in the <PATH>/bin directory . So, supposing the your
php-config can be found in /usr/local/bin, then use the following command:

’$./configure —--with-php=/usr/local

Warning: ZOO-Kernel optional PHP support requires a local PHP Embedded installation. Read more
here”.

Thttp:/ /zoo-project.org/trac/wiki/ZooKernel /Embed /PHP

Java Support (Optional)

In order to activate the Java support for ZOO-Kernel, the —with-java configure option must be spec-
ified and sets the installation path of your Java SDK. For instance, if Java SDK is installed in the
/usr/lib/jvm/java-6-sun-1.6.0.22/ directory, then the following command can be used:

$./configure --with-java=/usr/lib/jvm/java-6-sun-1.6.0.22/

This assumes that the include/linux and jre/lib/i386/client/ subdirectories exist in
/usr/lib/jvm/java-6-sun-1.6.0.22/, and that the include/linux directory contains the jni.h
headers file and that the jre/1ib/1386/client/ directory contains the 1ibjvm. so file.

Note: You can use the —with-java-rpath option to produce a binary aware of the libjvm location.

Note: With Mac OS X you only have to set macos as the value for the -——with-java option to activate Java
support. For example:

‘$./configure --with-java=macos

Perl Support (Optional)

The ——with-perl=yes option can be used for activating the ZOO-Kernel Perl support, as follow:

$./configure --with-perl=yes

Uhttps:/ /developer.mozilla.org/en/SpiderMonkey

2.3. Installation on Unix/Linux 9

https://developer.mozilla.org/en/SpiderMonkey
http://zoo-project.org/trac/wiki/ZooKernel/Embed/PHP

Z0OO0-Project Documentation, Release 1.5

This assumes that perl is found in your PATH. For instance, if Perl is installed in /usr/local and
/usr/local/bin is not found in your PATH, then the following command can be used (this assumes
that /usr/local/bin/perl exists):

$./configure --with-perl=/usr/local

Orfeo Toolbox Support (Optional)

In order to activate the optional Orfeo Toolbox support, the ——with-otb option must be used, using the
following command:

$./configure —-with-otb=/path/to/your/otb/

Read more about the Optional Orfeo Toolbox support.

Warning: To build the Orfeo Toolbox support you will require ITK, the default version of ITK is 4.5, in
case you use another version, please make sure to use the —~—with-itk-version to specificy what is
the version available on your system.

SAGA GIS Support (Optional)

In order to activate the optional SAGA GIS support, the —with-saga option must be used, using the following
command:

$./configure --with-saga=/path/to/your/saga/

Read more about the Optional SAGA GIS support.

Warning: In case wx-config is not in your PATH please, make sure to use the —~with-wx-config to
specify its location.

Translation support (Optional)

The ZOO-Kernel is able to translate the messages it produces in different natural languages. This requires
that you download the messages file'? translated in your language, if any. Then, for this translation support
to work, you have to generate manually the requested file on your system. For instance for the French
translation, you may use the following command:

msgfmt messagespo_fr_FR.utf8.po -o /usr/share/locale/fr/LC_MESSAGES/zoo-kernel.mo

The ZOO-Kernel is also able to handle translation of ZOO-Services. Please, refer to this document for more
details on the procedure to add new ZOO-Service translation files.

Warning: The location of the final . mo file may vary depending on your system setup.

12https: / /www.transifex.com/projects/p/zoo-kernel-internationalization/

10 Chapter 2. ZOO-Project installation

https://www.transifex.com/projects/p/zoo-kernel-internationalization/

Z0OO0-Project Documentation, Release 1.5

2.3.3 Install ZOO-Services

Warning: We present here a global installation procedure for basics ZOO-Services, for details about au-
tomatic installation of services provided by Optional Orfeo Toolbox support or Optional SAGA GIS support,
please refer to there specific documentations.

Depending on the programming language used to implement the ZOO-Services you want to install, you
will need to build a Services Provider. In the case of C and Fotran, you would create a shared library
exporting the functions corresponding to all the ZOO-Services provided by this Services Provider. In case
of Java, you will need to build a Java Class. In any other programming language, you should simply have
to install the ServiceProvider and the zcfg files.

If building a Shared library or a Java class is required, then you should find a Makefile in the service
directory which is responsible to help you build this Services Provider. So you should simply run the make
command from the Service directory to generate the required file.

Then you simply need to copy the content of the cgi-env directory in cgi-bin.

To install the ogr/base-vect-ops Services Provider, supposing that your cgi-bin directory is
/usr/local/lib use the following commands:

cd zoo-project/zoo-services/ogr/base-vect-ops
make
cp cgi-env/*.x /usr/lib/cgi-bin

Note: You may also run make install directly after make.

To install the hello-py Services Provider, use the following commands:

cd zoo-project/zoo-services/hello-py/
cp cgi-env/x /usr/lib/cgi-bin

2.3.4 Testing your installation

To test your installation yous should first be able to run the following command from the cgi-bin direc-
tory:

‘./zoo_loader.cgi "request=GetCapabilities&service=WPS"

2.4 Installation on Debian / Ubuntu

t13

Use the following instructions to install ZOO-Project™” on Debian or Ubuntu distributions.

2.4.1 Prerequisites
Using Debian

The following command should install all the required dependancies on Debian. See the Prerequisites section
for additional information.

3http:/ /zoo-project.org

2.4. Installation on Debian / Ubuntu 11

http://zoo-project.org

Z0OO0-Project Documentation, Release 1.5

‘apt—get install flex bison libfcgi-dev libxml2 libxml2-dev curl openssl autoconf apache# python-softn

Using Ubuntu

On Ubuntu, use the following command first to install the required dependancies :

sudo apt-get install flex bison libfcgi-dev libxml2 libxml2-dev curl openssl autoconf a#acheZ python-

Then add the UbuntuGIS repository in order to get the latest versions of libraries

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt—-get update

Install the geographic library as follow:

‘sudo apt-get install libgdall-dev

2.4.2 Installation

Download ZOO-Project latest version from svn using the following command:

‘svn checkout http://svn.zoo-project.org/svn/trunk zoo-project

Install the cgic library from packages using the following command:

cd zoo-project/thirds/cgic206/
make

Head to the ZOO-Kernel directory

‘cd ../../zoo-project/zoo-kernel/ ‘

Create a configure file as follow:

‘autoconf

Run configure with the desired options, for example with the following command:

‘./configure —--with-Jjs —--with-python ‘

Note: Refer to the installation section for the full list of available options

Compile ZOO-Kernel as follow:

’make ‘

Install the 1ibzoo_service.so.1.5 by using the following command:

’sudo make install ‘

Copy the necessary files to the cgi-bin directory (as administrator user):

cp main.cfg /usr/lib/cgi-bin
cp zoo_loader.cgi /usr/lib/cgi-bin

Install ZOO ServiceProviders, for example the basic Python service (as administrator user)

12 Chapter 2. ZOO-Project installation

Z0OO0-Project Documentation, Release 1.5

cp ../zoo-services/hello-py/cgi-env/*.zcfg /usr/lib/cgi-bin
cp ../zoo-services/hello-py/cgi-env/*.py /usr/lib/cgi-bin/

Edit the main.cfg file as follow (example configuration):

nano /usr/lib/cgi-bin/main.cfg
- serverAddress = http://127.0.0.1

Test the ZOO-Kernel installation with the following requests:

‘ http://127.0.0.1/cgi-bin/zoo_loader. cgi?ServiceProvider=&metapath=&Service=WPS&Request=¢etCapabilitie

’ http://127.0.0.1/cgi-bin/zoo_loader. cgi?ServiceProvider=&metapath=&Service=WPS&Request=]:#escribeProce:

‘ http://127.0.0.1/cgi-bin/zoo_loader. cgi?ServiceProvider:&metapath:&Service:WPS&Request:q:xecute&\/ersi(

Note: Such request should return well formed XML documents (OWS documents responses).

Warning: The URLs provided here suppose that you have previously setup a web server and defined
cgi-bin as a location where you can run cgi application.

Warning: If ZOO-Kernel returns an error please check the ZOO-Kernel configuration and beware of the
Prerequisites.

2.5 Install on OpenSUSE

Z0OO-Kernel is maintained as a package in OpenSUSE Build Service (OBS)!*. RPM are thus provided for all
versions of OpenSUSE Linux (11.2, 11.3, 11.4, Factory).

2.5.1 Stable release

Use the following instructions to install ZOO-Project latetst release on OpenSUSE distribution.

One-click installer

A one-click installer is available here'®. For openSUSE 11.4, follow this direct link'®.

Yast software manager

Add the Application:Geo!” repository to the software repositories and then ZOO-Kernel can then be found
in Software Management using the provided search tool.

4https:/ /build.opensuse.org /package/show?package=zoo-kernel&project=Application%3AGeo

http:/ /software.opensuse.org/search?q=zoo-kernel&baseproject=openSUSE%3A11.4&lang=ené&exclude_debug=true

16http:/ /software.opensuse.org/ymp/ Application:Geo/openSUSE_11.4/zoo-kernel.ymp?base=openSUSE%3A11.4&query=z00-
kernel

7http:/ /download.opensuse.org/repositories/ Application:/ Geo/

2.5. Install on OpenSUSE 13

https://build.opensuse.org/package/show?package=zoo-kernel&project=Application%3AGeo
http://software.opensuse.org/search?q=zoo-kernel&baseproject=openSUSE%3A11.4&lang=en&exclude_debug=true
http://software.opensuse.org/ymp/Application:Geo/openSUSE_11.4/zoo-kernel.ymp?base=openSUSE%3A11.4&query=zoo-kernel
http://download.opensuse.org/repositories/Application:/Geo/

Z0OO0-Project Documentation, Release 1.5

Command line (as root for openSUSE 11.4)

Install ZOO-Kernel package by yourself using the following command:

zypper ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_11.4/
zypper refresh
zypper install zoo-kernel

Developement version

The latest development version of ZOO-Kernel can be found in OBS under the project home:tzotsos'®.
Z0OO0-Kernel packages are maintained and tested there before being released to the Application:Geo repos-
itory. Installation methods are identical as for the stable version. Make sure to use this'’ repository instead.

Command line (as root for openSUSE 11.4)

Install latest ZOO-Kernel trunk version with the following command:

zypper ar http://download.opensuse.org/repositories/home:/tzotsos/openSUSE_11.4/
zypper refresh

zypper install zoo-kernel

zypper install zoo-kernel-grass-bridge

Note that there is the option of adding the zoo-wps-grass-bridge package. This option will automatically
install grass7 (svn trunk).

2.6 Installation on CentOS

Use the following instructions to install ZOO-Project®” on CentOS distributions.

2.6.1 Prerequisites

First you should add the ELGIS Repository?! then install the dependencies by using yum commands.

rpm -Uvh http://elgis.argeo.org/repos/6/elgis-release-6-6_0.noarch.rpm
rpm -Uvh \
http://download. fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
wget\
http://proj.badc.rl.ac.uk/cedaservices/raw—attachment/ticket/670/armadillo-3.800.2-1.¢
yum install armadillo-3.800.2-1.e16.x86_64.rpm
yum install hdf5.so0.6
yum install gcc-c++ zlib-devel libxml2-devel bison openssl \
python-devel subversion libxslt-devel libcurl-devel \
gdal-devel proj-devel libuuid-devel openssl-devel fcgi-devel
yum install java-1.7.0-openjdk-devel

»16.x86_64.rpr

18https:/ /build.opensuse.org/ project/show?project=home%3Atzotsos
http:/ /download.opensuse.org/repositories/home:/ tzotsos/
2http:/ /zoo-project.org

2lhttp:/ /elgis.argeo.org

14 Chapter 2. ZOO-Project installation

https://build.opensuse.org/project/show?project=home%3Atzotsos
http://download.opensuse.org/repositories/home:/tzotsos/
http://zoo-project.org
http://elgis.argeo.org

Z0OO0-Project Documentation, Release 1.5

2.6.2 Installation

Now refer to general instructions from Installation on Unix/Linux to setup your ZOO-Kernel and the ZOO-
Services of your choice.

Note: In case you use the Java support, please, make sure to use the correct version of both java and javac
using the following commands:

update-alternatives —-config java
update-alternatives —--config javac

Also, make sure to add the following to your main.cfg file before trying to execute any Java service:

[javax]
ss=2m

2.7 Installation on Windows ™

2.7.1 Install ZOO-Project binaries

Note: The content of the ZOO-Project Windows-Binaries is based on GlSInternals SDK??, make sure to
refer to license informations.

Note: When using the ZOO-Project Windows-Binaries, you can decide if you want the Java support acti-
vated or not (which is the case per default). Indeed, once your installation has been done, you will have both

a zoo_loader.cgi and zoo_loader_java.cgi which correspond respectively to the ZOO-Kernel without and with
Java support activated. So, in case you want to use the Java support, simply rename the zoo_loader_jave.cgi
file located in c:\inetpub\cgi-bin to zoo_loader.cgi and make sure the jom.dll can be found.

Using the installer

Prior to run the ZOO-Project-Installer, please make sure you have IIS and Python? setup on your machine.
Then download the ZOO-Project-Installer** corresponding to your platform. The first time you will run the
installer binary, you may be prompted to authorize it to run. Once the installer has been run, simply access
the following link: http:/ /localhost/zoo-demo/ to access your local demo application.

Install by hand

Prior to run the ZOO-Project-Installer, please make sure you have IIS and Python® setup on your machine.
Then download the ZOO-Project®® archive corresponding to your platform. Uncompress it, then move cgi-
bin, data and tmp from uncompressed folder to c:\inetpub, also move wwwroot\zoo-demo and wwwroot\tmp
to c:\inetpub\wwwroot. To finish the installation, run the folllowing command as administrator to allow the
zoo_loader.cgi to run from http:/ /localhost/cgi-bin/zoo_loader.cgi:

Zhttp:/ /www.gisinternals.com/release.php

Zhttps:/ /www.python.org/downloads/windows/

Zhttps:/ /bintray.com/ gfenoy/ZOO-Project/ Windows-Binaries / view
Zhttps:/ /www.python.org/downloads/windows/

26https: / /bintray.com/gfenoy /ZOO-Project/ Windows-Binaries / view

2.7. Installation on Windows ™ 15

http://www.gisinternals.com/release.php
https://www.python.org/downloads/windows/
https://bintray.com/gfenoy/ZOO-Project/Windows-Binaries/view
http://localhost/zoo-demo/
https://www.python.org/downloads/windows/
https://bintray.com/gfenoy/ZOO-Project/Windows-Binaries/view
http://localhost/cgi-bin/zoo_loader.cgi

Z0OO0-Project Documentation, Release 1.5

cd C:\Windows\System32\inetsrv

appcmd.exe add vdirs /app.name:"Default Web Site/" /path:/cgi-bin /physicalPath:c:\
appcmd set config /section:handlers /+[name='CGI-exel',path="'x.cgi',verb="'+*"',module
appcmd.exe set config /section:isapiCgiRestriction /+[path='c:\inetpub\cgi-bin\zoo_|

inetpub\cgi-k
s="'CgiModule’
loader.cgi',c

2.7.2 Compile ZOO-Project from source

Warning: Ensure to first perform the prerequisite steps before compiling the ZOO Kernel.

The following steps are for use with the Microsoft Visual Studio compiler (and tested with MSVC 2010).

1. Make sure the gnuwin32 tools bison.exe and flex.exe are found in your path. You can download

the GNUwin32 tools here? .

. Modify the nmake.opt file to point to your local libraries. Note that you can also use definition

directly in the command line if you prefer. See Build options for details about this options.

. Execute:

nmake /f makefile.vc

. A file zoo_loader.cgi and libzoo_service.dll should be created. Note that if another file

named zoo_loader.cgi.manifest is also created, you will have to run another command:

nmake /f makefile.vc embed-manifest ‘

. Copy the files zoo_loader.cgi, libzoo_service.dll and main.cfg into your cgi-bin direc-

tory.

. Using the command prompt, test the ZOO-Kernel by executing the following command:

D:\ms4w\Apache\cgi-bin> zoo_loader.cgi

which should display a message such as:

Content-Type: text/xml; charset=utf-8
Status: 200 OK

<?xml version="1.0" encoding="utf-8"7?>
<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://w|
<ows:Exception exceptionCode="MissingParameterValue">
<ows:ExceptionText>Parameter <request> was not specified</ows:ExceptionTe
</ows:Exception>
</ows:ExceptionReport>

. Edit the main. cfg file so that it contains values describing your WPS service. An example of such a

file running on Windows is:

[main]
encoding = utf-8
version = 1.0.0

serverAddress = http://localhost/
lang = en-CA
tmpPath=/ms4w/tmp/ms_tmp/

tmpUrl = /ms_tmp/

27http:/ /www.zoo-project.org/dl/tool-win32.zip

16

Chapter 2. ZOO-Project installation

ww.w3.0rg/20C

xt>

http://www.zoo-project.org/dl/tool-win32.zip

Z0OO0-Project Documentation, Release 1.5

[identification]

title = The Zoo WPS Development Server

abstract = Development version of ZooWPS. See http://www.zoo-project.org
fees = None

accessConstraints = none

keywords = WPS,GIS,buffer

[provider]

providerName=Gateway Geomatics
providerSite=http://www.gatewaygeomatics.com
individualName=Jeff McKenna
positionName=Director

role=Dev

adressDeliveryPoint=1101 Blue Rocks Road
addressCity=Lunenburg
addressAdministrativeArea=False
addressPostalCode=B0J 2CO

addressCountry=ca
addressElectronicMailAddress=infolgatewaygeomatics.com
phoneVoice=False

phoneFacsimile=False

8. Open a web browser window, and execute a GetCapababilites request on your WPS service:
http:/ /localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

The response should be displayed in your browser, such as:

<wps:Capabilities xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.ne
<ows:Serviceldentification>
<ows:Title>The Zoo WPS Development Server</ows:Title>
<ows:Abstract>
Development version of ZooWPS. See http://www.zoo-project.org
</ows:Abstract>
<ows:Keywords>
<ows:Keyword>WPS</ows:Keyword>
<ows:Keyword>GIS</ows:Keyword>
<ows:Keyword>buffer</ows:Keyword>
</ows:Keywords>
<ows:ServiceType>WPS</ows:ServiceType>
<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>

Build options

Various build options can be set in the nmake.opt file to define the location of the built libraries you
want to use to build your ZOO-Kernel. Some are optional and some are required, they are listed below
exhaustively:

2.7. Installation on Windows ™ 17

http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

Z0OO0-Project Documentation, Release 1.5

o gettext (Required)
 [ibCURL (Required)
¢ [ibFCGI (Required)

* [ibXML2 (Required)
® OpenSSL (Required)
e GDAL (Required)

* MapServer (Optional)
* Python (Optional)

* JavaScript (Optional)
* PHP (Optional)

* Database backend (Optional)

gettext (Required)

The location of the libintl (built when building gettext) should be specified by defining the INTL_DIR
environment variable. It supposes that the header and the int1.11ib file are available.

So for instance, in case you build the gettext in \buildkit\srcs\gettext-0.14.6, youmay define the
following before running nmake /f makefile.vc:

set INTL_DIR=\buildkit\srcs\gettext-0.14.6\gettext-runtime\intl

libCURL (Required)

The location of the libCURL should be specified by defining the CURL_DIR environment variable. It sup-
poses that there are 2 sub-directory include containing the libCURL header and 1ib which contains the
libcurl.lib file.

So for instance, in case you build the libCURL in \buildkit\srcs\curl-7.38.0, you may define the
following before running nmake /f makefile.vc:

‘set CURL_DIRz\buildkit\srcs\curl—7.38.0\builds\libcurl—vclO—xS6—release—dll—ssl—dll—zli#—dll—ipvs6—s

libFCGI (Required)

The location of the libFCGI should be specified by defining the FCGI_DIR environment variable. It sup-
poses that there are 2 sub-directory include containing the FastCGI header and l1ibfcgi/Release
which contains the 1ibfcgi.1lib file.

So for instance, in case you build the libXML2 library in \buildkit\srcs\fcgi-2.4.1, youmay define
the following before running nmake /f makefile.vc:

set FCGI_DIR=\buildkit\srcs\fcgi-2.41.1

libXML2 (Required)

The location of the libXML2 should be specified by defining the XML2_DIR environment variable. It sup-
poses that there are 2 sub-directory include containing the libXML2 header and win32\bin.msvc which
contains the 1ibxm12. 1ib file.

So for instance, in case you build the libXML2 library in \buildkit\srcs\libxml2-2.9.0, you may
define the following before running nmake /f makefile.vc:

18 Chapter 2. ZOO-Project installation

Z0OO0-Project Documentation, Release 1.5

set XML2_DIR=\buildkit\srcs\libxml2-2.9.0

OpenSSL (Required)

The location of the OpenSSL library should be specified by defining the SSL_DIR environment variable. It
supposes that there are 2 sub-directory inc32 containing the header files and out32d11 which contains
the ssleay32.1ib file.

So for instance, in case you build the libXML2 library in \buildkit\srcs\openssl-1.0.2c, you may
define the following before running nmake /f makefile.vc:

’set SSL_DIR=\buildkit\srcs\openssl-1.0.2c

GDAL (Required)

The location of the GDAL library should be specified by defining the GDAL_DIR environment vari-
able. It corresponds to the path where you uncompress and built GDAL, it supposes that you have the
gdal_i.1lib file available in this directory.

So for instance, in case you build the libXML2 library in \buildkit\srcs\gdal-1.10.1, you may de-
fine the following before running nmake /f makefile.vc:

set GDAL_DIR=\buildkit\srcs\gdal-1.10.1

MapServer (Optional)

The location of the MapServer library path should be specified by defining the MS_DIR environment vari-
able. It corresponds to the path where you build MapServer on your system, this directory should contain
the nmake. opt file used.

So for instance, in case you build Python in \buildkit\srcs\mapserver-6.2.0, you may define the
following before running nmake /f makefile.vc:

‘set MS_DIR=\buildkit\srcs\mapserver-6.2.0

Python (Optional)

The location of the Python binaries path should be specified by defining the PY_DIR environment variable.
It corresponds to the path where you build Python on your system. The location of the pythonXX.1lib
files should be specified by setting the PY_LIBRARY environment variable.

So for instance, in case you build Python in \buildkit\srcs\Python-2.7, you may define the follow-
ing before running nmake /f makefile.vc:

set PY_DIR=\buildkit\srcs\Python-2.7
set PY_LIBRARY=\buildkit\srcs\Python-2.7\PCBuild\python27.1ib

JavaScript (Optional)

The location of libmozjs should be specified by defining the JS_DIR environment variable. It corre-
sponds to the path where you build libmozjs on your system, it supposes that the header and the
mozjsl85-1.0.1ib file are available in this directory.

2.7. Installation on Windows ™ 19

Z0OO0-Project Documentation, Release 1.5

So for instance, in case you build libmozjs in \buildkit\srcs\js-1.8.5, you may define the following
before running nmake /f makefile.vc:

‘set JS_DIR=\buildkit\srcs\js-1.8.5

PHP (Optional)

The location of PHP should be specified by defining the PHP_DIR environment variable. It corresponds
to the path where you build PHP on your system. The location of the php5embed. 11ib files should be
specified by setting the PHP_LIB environment variable.

So for instance, in case you build PHP in \buildkit\srcs\php-5.5.10, you may define the following
before running nmake /f makefile.vc:

set PHP_DIR=\buildkit\srcs\php-5.5.10
set PHP_LIB=\buildkit\srcs\php-5.5.10\Release_TS\php5embed.lib

Database backend (Optional)

Z0OO0O-Kernel can use a database backend to store ongoing status informations of running services, for ac-
tivating this operation mode, you should define the evironment variable DB and set it to any value. So, to
activate this option, you may use the following before running nmake /f makefile.vc:

‘set DB=activated ‘

Note: To learn how to setup the corresponding database, please refer to this section.

Optionally Compile Individual Services

An example could be the OGR base-vect-ops provider located in the
zoo-project\zoo-services\ogr\base-vect-ops directory.

1. First edit the makefile.vc located in that directory, and execute:

‘ nmake /f makefile.vc

Inside that same directory, the ogr_service.zo file should be created.

2. Copy all the files inside zoo-services\ogr\base-vect-ops\cgi-env into your cgi-bin di-
rectory

3. Test this service provider through the following URL:

http:/ /localhost/ cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=Buffer&Datalnputs=B
project.org%3A8082%2Fgeoserver%2Fows%3FSERVICE%3DWFS%26REQUEST%3DGetFeature%26 VERSION %3D1.0.0%2

The response displayed in your browser should contain:

<wps:ProcessSucceeded>Service "Buffer" run successfully.</wps:ProcessSucceeded>

20 Chapter 2. ZOO-Project installation

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=Buffer&DataInputs=BufferDistance=1@datatype=interger;InputPolygon=Reference@xlink:href=http%3A%2F%2Fwww.zoo-project.org%3A8082%2Fgeoserver%2Fows%3FSERVICE%3DWFS%26REQUEST%3DGetFeature%26VERSION%3D1.0.0%26typename%3Dtopp%3Astates%26SRS%3DEPSG%3A4326%26FeatureID%3Dstates.15
http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=Buffer&DataInputs=BufferDistance=1@datatype=interger;InputPolygon=Reference@xlink:href=http%3A%2F%2Fwww.zoo-project.org%3A8082%2Fgeoserver%2Fows%3FSERVICE%3DWFS%26REQUEST%3DGetFeature%26VERSION%3D1.0.0%26typename%3Dtopp%3Astates%26SRS%3DEPSG%3A4326%26FeatureID%3Dstates.15

CHAPTER
THREE

ZOO-KERNEL

This section provides information on ZOO-Kernel , the ZOO-Project! WPS server. It will help you to
configure and compile ZOO-Kernel.

3.1 What is ZOO-Kernel ?

ZOO-Kernel is the heart of the ZOO-Project” WPS platform. It is a WPS compliant implementation written
in C language which provides a powerful and extensible WPS server.

Z0OO0O-Kernel is an extensible WPS server that makes your system more powerful. It provides a full-featured
processing engine which runs on Linux, Mac OSX ™ and Windows ™ operating systems. ZOO-Kernel is
a CGI program which works on common web servers (namely Apache’® or [IS* ™). It can be seamlessly
integrated to new or existing web platforms.

Z0OO0-Kernel lets you process geospatial or non geospatial data using well formed WPS requests. The WPS
server is able to manage and chain WPS Services (see ZOO-Services for examples) by loading dynamic
libraries and source code written in different programming languages.

3.1.1 First class WPS server
Simple

The ZOO-Kernel rely on simple principles and tends to ease the implementation of new services by sharing
similar data structures for every supported programming languages. The ZOO-Kernel is responsible to
parse the requests it receives and return the corresponding WPS response.

In case of an Execute request, the ZOO-Kernel stores informations in a basic KVP data structure for the
programming language used to implement the service, dynamically load the Service Provider defined in
the zcfg file and run a specific function corresponding to the service, passing three arguments. Once the
function return, ZOO-Kernel knows if the service run succeessfuly or failed by checking the returned value.
In the case it succeeded, the ZOO-Kernel then parse the third arguments containing the result and produce
the output in the desired format.

Thttp:/ /zoo-project.org
Zhttp:/ /zoo-project.org
3http: / /httpd.apache.org/
4http: //www.iis.net/

21

http://zoo-project.org
http://zoo-project.org
http://httpd.apache.org/
http://www.iis.net/

Z0OO0-Project Documentation, Release 1.5

Compliant

ZOO-Kernel implements and complies with the WPS 1.0.0° and the WPS 2.0.0° standards edited by the
Open Geospatial Consortium”. It is able to perform the WPS operations defined in the OpenGIS ® specifi-
cation, such as:

¢ GetCapablities: Returns service-level metadata information.It provides the list of available process-
ing services.

* DescribeProcess: Returns a description of a process, including its supported input and output.

* Execute: Launches computation and returns the output produced by a particular process.

¢ GetStatus: only available in WPS 2.0.0, it lets the client fetch the ongoing status of a running service.
¢ GetResult: only available in WPS 2.0.0, it lets the client fetch the final result of a running service.

* Dismiss: only available in WPS 2.0.0, it lets the client ask the server to stop a running service and
remove any file it created.

Z00-Kernel compliancy and performances can be tested using the following tools:
e cptesting®
e WPS Test Suite provided by the OGC compliancy program’
e XML responses validity can also be simply tested using XMLint!".

Polyglot
ZOO0O-Kernel is a polyglot. The software is written in a valid form of multiple programming languages,

which performs the same operations independent of the programming language used to compile or inter-
pret it. The supported programming languages are listed bellow:

Lan- Service- DataStructure Return

guage Provider

Cc/ Shared maps* M integer

C++ Library

Java Class File HashMap11 integer

Python | Module File | Dictionary'” integer

PHP Script File Array® integer

Perl Script File integer

Ruby Script File Hash'* integer

Fortran | Shared CHARACTER*(1024) M(10,30) integer
Library

JavaScript Script file Object’ or Array Ob-

ject/Array

Shttp:/ /www.opengeospatial.org/standards/wps/

Shttp:/ /www.opengeospatial.org/standards/wps/

"http:/ /www.opengeospatial.org/

Shttps:/ /github.com/WPS-Benchmarking/ cptesting

“http:/ /cite.opengeospatial.org /

10http: / /xmlsoft.org/xmllint html/

11http: / /download.oracle.com/javase/6/docs/api/java/util/HashMap.html
12http: / /docs.python.org/tutorial / datastructures.html#dictionaries
BBhttp:/ /php.net/manual/language.types.array.php

Yhttp:/ /ruby-doc.org/core-2.2.0/Hash.html

Bhttp:/ /www.json.org/

22 Chapter 3. ZOO-Kernel

http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/
https://github.com/WPS-Benchmarking/cptesting
http://cite.opengeospatial.org/
http://xmlsoft.org/xmllint.html/
http://download.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.python.org/tutorial/datastructures.html#dictionaries
http://php.net/manual/language.types.array.php
http://ruby-doc.org/core-2.2.0/Hash.html
http://www.json.org/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Z0OO0-Project Documentation, Release 1.5

3.2 ZOO-Kernel configuration

3.2.1 Main configuration file

Z0OO0O-Kernel general settings are defined in a configuration file called main.cfg. This file is stored in
the same directory as ZOO-Kernel (/usr/1lib/cgi-bin/ in most cases). It provides usefull metadata
information on your ZOO-Kernel installation.

Warning: ZOO-Kernel (/usr/lib/cgi-bin/zoo_loader.cgi) and its configuration file
(/usr/lib/cgi-bin/main.cfg) must be in the same directory.

Note: Information contained by /usr/1lib/cgi-bin/main.cfg is accessible from WPS Services at run-
time, so when Execute requests are used.

Default main.cfg

An example main.cfg file is given here as reference.

[headers]
X-Powered-By=Z00@Z0OO-Project

[main]

version=1.0.0

encoding=utf-8

dataPath=/var/data

tmpPath=/var/www/temp

cacheDir=/var/www/cache

sessPath=/tmp
serverAddress=http://localhost/cgi-bin/zoo_loader.cgi
lang=fr-FR, ja-JP

language=en-US
mapserverAddress=http://localhost/cgi-bin/mapserv.cgi
msOgcVersion=1.0.0

tmpUrl=http:/localhost/temp/

cors=false

[identification]

keywords=t, Z00-Project, ZOO-Kernel,WPS,GIS
title=Z00-Project demo instance

abstract= This is Z0OO-Project, the Open WPS platform.
accessConstraints=none

fees=None

[provider]
positionName=Developer
providerName=GeoLabs SARL
addressAdministrativeArea=False
addressDeliveryPoint=1280, avenue des Platanes
addressCountry=fr
phoneVoice=+33467430995
addressPostalCode=34970
role=Dev
providerSite=http://geolabs.fr
phoneFacsimile=False

3.2. ZOO0O-Kernel configuration 23

37

38

39

Z0OO0-Project Documentation, Release 1.5

addressElectronicMailAddress=gerald@geolabs.fr
addressCity=Lattes
individualName=Gerald FENOY

Main section

The main.cfg [main] section parameters are explained bellow.
* version: Supported WPS version.
* encoding: Default encoding of WPS Responses.

¢ dataPath: Path to the directory where data files are stored (used to store mapfiles and data when
MapServer support is activated).

* tmpPath: Path to the directory where temporary files are stored (such as ExecuteResponse when store-
ExecuteResponse is set to true).

* tmpUrl: URL to access the temporary files directory (cf. tmpPath).

* cacheDir: Path to the directory where cached request files ! are stored (optional).

* serverAddress: URL to the ZOO-Kernel instance.

* mapservAddress: URL to the MapServer instance (optional).

e msOgcVersion: Version of all supported OGC Web Services output ? (optional).

* lang: Supported natural languages separated by a coma (the first is the default one),

¢ cors: Define if the ZOO-Kernel should support Cross-Origin Resource Sharing!®. If this parameter
is not defined, then the ZOO-Kernel won't support CORS.

* servicePath: Define a specific location to search for services rather than using the ZOO-Kernel
directory. If this parameter is not defined, then the ZOO-Kernel will search for services using its
directory.

® libPath: (Optional) Path to a directory where the ZOO-kernel should search for service providers,
e.g., shared libraries with service implementations (the serviceProvider parameter in the service
configuration (.zcfg) file).

Warning: The 1ibPath parameter is currently only recognized by services implemented in C/C++ or
PHP, and may be moved to another section in future versions.

In case you have activated the MapServer support, please refer to this specific section.

Identification and Provider

The [identification] and [provider] sections are not ZOO-Project specific. They provide OGC
metadata ° and should be set according to the XML Schema Document'” which encodes the parts of ISO
19115 used by the common Serviceldentification and ServiceProvider sections of the GetCapabilities operation
response, known as the service metadata XML document.

1 If GET requests are passed through x1ink:href to the ZOO-Kernel , the latter will execute the request the first time and store
the result on disk. The next time the same request is executed, the cached file will be used and this will make your process run much
faster. If cachedir was not specified in the main. cfg then the tmpPath value will be used.

2 Usefull when the Optional MapServer support is activated (available since ZOO-Project version 1.3.0).

16https:/ /www.w3.org/TR/cors/

3 ZOO-Kernel and MapServer are sharing the same metadata for OGC Web Services if the Optional MapServer support is activated.

7http:/ /schemas.opengis.net/ows/1.1.0/ows19115subset.xsd

24 Chapter 3. ZOO-Kernel

https://www.w3.org/TR/cors/
http://schemas.opengis.net/ows/1.1.0/ows19115subset.xsd

Z0OO0-Project Documentation, Release 1.5

Details of the common OWS 1.1.0 Serviceldentification section can be found in this XML Schema Document!®.

Details of the common OWS 1.1.0 ServiceProvider section can be found in this XML Schema Document!?.

3.2.2 Additional sections

All the additional sections discribed in the following section are optional.

Headers section

The [headers] section can be set in order to define a specific HTTP Response header, which will be used
for every response. As an example, you can check http://zoo-project.org using curl command line tool and
notice the specific header X-Powered-By: Zoo-Project@Trac.

In case you want to allow CORS support for POST requests coming from myhost .net, then you should
define the following minimal parameters in this section:

Access-Control-Allow-Origin=myhost.net
Access—-Control-Allow-Methods=POST
Access—-Control-Allow-Headers=content-type

env section
The [env] section can be used to store specific environment variables to be set prior the loading of Services
Provider and Service execution.

A typical example is when a Service requires the access to a X server running on framebuffer, which takes to
set the DISPLAY environnement variable, as follow:

[env]
DISPLAY=:1

In case you have activated the OTB support, please refer to this specific section.

lenv section
The lenv section is used by the ZOO-Kernel to store runtime informations before the execution of a WPS
service, it contains the following parameters:

® sid (r): The WPS Service unique identifier,

® status (rw): The current progress value (a value between 0 and 100 in percent (%)),

¢ cwd (r): The current working directory of ZOO-Kernel,

* message (rw): An error message used when SERVICE_FAILED is returned (optional),

® cookie (rw): The cookie to be returned to the client (for example for authentication purpose).

e file.pid (r): The file used by the ZOO-Kernel to store process identifier.

* file.sid (r): The file used by the ZOO-Kernel to store service identifier.

e file.responselInit (r): The file used by the ZOO-Kernel to store the initial (then final) WPS re-
sponse.

18http:/ /schemas.opengis.net/ows/1.1.0/owsServiceldentification.xsd
http:/ /schemas.opengis.net/ows/1.1.0/ owsServiceProvider.xsd

3.2. ZOO0O-Kernel configuration 25

http://schemas.opengis.net/ows/1.1.0/owsServiceIdentification.xsd
http://schemas.opengis.net/ows/1.1.0/owsServiceProvider.xsd
http://zoo-project.org

Z0OO0-Project Documentation, Release 1.5

e file.responseFinal (r): The file used by the ZOO-Kernel to temporary store the final WPS re-
sponse.

renv section

The renv section is automatically created by the ZOO-Kernel before the execution of a WPS service, it
contains all the environment variables available at runtime (so including the header fields in case it is used
through http, refer to [https:/ /tools.ietf.org/html/rfc3875 rfc3875] for more details).

senv section

The senv section can be used to store sessions information on the server side. Such information can then be
accessed automatically from the Service if the server is requested using a valid cookie (as defined in 1env
section). ZOO-Kernel will store the values set in the senv maps on disk, load it and dynamically replace
its content to the one in the main . cfg. The senv section must contain the following parameter at least:

¢ xxX: The session unique identifier where XXX is the name included in the cookie which is returned.

For instance, adding the following in the Service source code :

conf["lenv"] ["cookie"]="XXX=XXX1000000; path=/"
conf["senv"]={"XXX": "XXX1000000","login": "demoUser"}

means that ZOO-Kernel will create a file named sess_XxXxX1000000.cfqg in the cacheDir directory, and
will return the specified cookie to the client. Each time the client will request ZOO-Kernel using this cookie,
it will automatically load the value stored before the Service execution.

Security section

The [security] section can be used to define what headers, the ZOO-Kernel has initially received in the
request, should be passed to other servers for accessing resources (such as WMS, WFS, WCS or any other
file passed as a reference). This section contains two parameters:

* attributes: The header to pass to other servers (such as Authorization, Cookie, User-Agent ...),

ey

® hosts: The host for wich the restriction apply (can be
separated list of host names, domain, IP).

to forward header to every server or a coma

Both parameters are mandatory:.

Suppose you need to share Authorization, Cookie and User-Agent to every server for accessing ressources,
then yo ucan use the following section definition:

[security]
attributes=Authorization, Cookie,User-Agent
hosts=x*

In case only local servers require such header forwarding, you may use the following definition:

[security]
attributes=Authorization, Cookie, User-Agent
hosts=localhost,127.0.0.1

26 Chapter 3. ZOO-Kernel

https://tools.ietf.org/html/rfc3875

Z0OO0-Project Documentation, Release 1.5

Database section

The database section allows to configure the ZOO-Kernel optional database support.

[database]
dbname=zoo_project
port=5432
user=username
host=127.0.0.1
type=PG
schema=public

This will generate strings to be passed to GDAL to connect the database server:

’<type>:host=<host> port=<port> user=<user> dbname=<dbname>

With the previous database section, it will give the following:

‘PG:"dbname=zoo_project host=127.0.0.1 port=5432 user=username"

Please refer to this section to learn how to setup the database.

Include section

The [include] section (optional) lists explicitely a set of service configuration files the the ZOO-Kernel
should parse, e.g.,

[include]
servicenamel = /my/service/repository/servicel.zcfg
servicename2 = /my/service/repository/service2.zcfg

The [include] section may be used to control which services are exposed to particular user groups. While
service configuration files (.zcfg) may be located in a common repository or in arbitrary folders, main.cfg
files at different URLs may include different subsets of services.

When the ZOO-Kernel handles a request, it will first check if there is an [include] section in main.cfg
and then search for other .zcfg files in the current working directory (CWD) and subdirectories. If an
included service happens to be located in a CWD (sub)directory, it will be published by its name in the
[include] section. For example, the service / [CWD] /name/space/myService.zcfg would normally
be published as name.space.myService, but if it is listed in the [include] section it will be published
simply as myService:

[include]

myService = /[CWD]/name/space/myService.zcfg
On the other hand, with

[include]

myService = /some/other/dir/myService.zcfg

there would be two distinct services published as myService and name.space.myService, respectively, with
two different zcfg files.

Note: As currently implemented, the ZOO-Kernel searches the CWD for the library files of included
services if the 1ibPath parameter is not set.

3.2. ZOO0O-Kernel configuration 27

Z0O0-Project Documentation, Release 1.5

3.3 Optional MapServer support

Processing geospatial data using WPS Services is usefull. Publishing their results directly as WMS, WFS
or WCS ressources is even more convenient. This is possible since ZOO-Project 1.3% using the optional
MapServer support. The latter thus allows for automatic publication of WPS Service output as WMS/WFS
or WCS using a ZOO-Kernel specific internal mechanism which is detailed in this section.

g

-

\

Note:
2

MapServer21 is an open source WMS/WFS/WCS server. Learn more by reading
its documentation=.

3.3.1 How does it work ?
If a request with mimeType=image/png is sent to ZOO-Kernel, the latter will detect that the useMapServer
option is set to true an it will automatically:
* Execute the service using the <Default> block definition (these values must be understood by GDAL*)
¢ Store the resulting output on disk (in the [main] > dataPath directory)

e Write a mapfile’® (in the [main] > dataPath directory) using the MapServer” C-API (this sets up
both WMS and WFS services).

Existing WPS Services source code doesn’t need to be modified once the MapServer support is activated. It
only takes to edit their respective ZOO-Service configuration file files accordingly.

Note: In case of a vector data source output, both WMS and WFS configuration are included by default in
the resulting mapfile.

Note: In case of a raster data source output, both WMS and WCS configuration are included by default in
the resulting mapfile.

Depending on the requests, ZOO-Kernel is able to return a location header and different request types:
¢ ResponseDocument=XXXX@asReference=true®®

In this case, ZOO-Kernel will return the GetMap/GetFeature/GetCoverage request as KVP in the href of
the result.

* ResponseDocument=XXXX@asReference=false?”

In this case, ZOO-Kernel will return the result of the GetMap /GetFeature/GetCoverage request as KVP of
the href used in the previous case.

2Ohttp:/ /zoo-project.org

2lhttp:/ /mapserver.org

2http:/ /mapserver.org/documentation.html
Zhttp:/gdal.org

24http: / /mapserver.org/mapfile/index.html
Zhttp:/ /mapserver.org
26ResponseDocument=XXXX@asReference=true
27ResponseDocument=XXXX@asReference=false

28 Chapter 3. ZOO-Kernel

http://zoo-project.org
http://mapserver.org
http://mapserver.org/documentation.html
http:/gdal.org
http://mapserver.org/mapfile/index.html
http://mapserver.org
mailto:ResponseDocument=XXXX@asReference=true
mailto:ResponseDocument=XXXX@asReference=false

Z0OO0-Project Documentation, Release 1.5

¢ RawDataOutput=XXXX@asReference=true/false?®

In this case, ZOO-Kernel will return the GetMap/GetFeature/GetCoverage request as KVP in a specific
location header, which implies that the browser is supposed to request MapServer directly.

Whatever the default output mimelType returned by a WPS service is, it is used if the useMapserver option is
found at runtime. As an example, if <Default> and <Supported> blocks are found in the ZOO Service
configuration file as shown bellow, this means that the service returns GML 3.1.0 features by default.

<Default>

mimeType = text/xml

encoding = UTF-8

schema = http://schemas.opengis.net/gml/3.1.0/base/feature.xsd

</Default>
<Supported>

mimeType = image/png
useMapserver = true
</Supported>

3.3.2 Installation and configuration

Follow the step described bellow in order to activate the ZOO-Project optional MapServer support.

Prerequisites

e latest ZOO-Kernel® trunk version
e MapServer® version >= 6.0.1

First download the lastest zoo-kernel by checking out the svn. Use the following command from do the
directory where your previously checked out (in this example we will use <PREV_SVN_CO> to design this
directory).

cd <PREV_SVN_CO>
svn checkout http://svn.zoo-project.org/svn/trunk/zoo-kernel zoo-kernel-ms

Then uncompress the MapServer archive (ie. mapserver-6.0.1.tar.bz2) into /tmp/zoo-ms-src,
and compile it using the following command:

cd /tmp/zoo-ms—-src/mapserver—6.0.1
./configure --with-ogr=/usr/bin/gdal-config --with-gdal=/usr/bin/gdal-config \

--with-proj --with-curl --with-sos —--with-wfsclient --with-wmsclient \
——with-wcs —--with-wfs —--with-postgis —--with-kml=yes --with-geos \
——with-xml --with-xslt --with-threads --with-cairo

make
cp mapserv /usr/lib/cgi-bin

Once done, compile ZOO-Kernel with MapServer support from the <PREV_SVN_CO> directory, using the
following command:

cd zoo-kernel-ms

autoconf

./configure —--with-python —--with-mapserver=/tmp/zoo-ms-src/mapserver-6.0.1
make

28RawDataOutput=XXXX@asReference=true/false
29http: / /zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
30http: //mapserver/org

3.3. Optional MapServer support 29

mailto:RawDataOutput=XXXX@asReference=true/false
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
http://mapserver/org

Z0OO0-Project Documentation, Release 1.5

You can then copy the new ZOO-Kernel to /usr/1ib/cgi-bin directory, as follow:

cp zoo_loader.cgil /usr/lib/cgi-bin

Main configuration file

Open and edit the /usr/1ib/cgi-bin/main.cfg file, by adding the following content in the [main]
section:

dataPath = /var/www/temp/
mapserverAddress=http://localhost/cgi-bin/mapserv

The dataPath directory is mandatory and must belong to the Apache user.

mkdir /var/www/temp/
chown -r apache:apache /var/www/temp/

A symbols. sym file is required in this directory. Create it and add the following content in it:

SYMBOLSET
SYMBOL
NAME "circle"
TYPE ellipse
FILLED true
POINTS
11
END
END
END

Note: Only one symbol definition is required (with any name) for the WMS service output.

The ZOO-Project optional MapServer support is activated at this step. Don’t forget to add the
mapserverAddress and msOgcVersion parameters to the main. cfg file in order to to specify the path
to MapServer and the OGC WebService version used by the Services.

Warning: ZOO-kernel will segfault (checking NULL value should correct this behavior) if the
mapserverAddress parameter is not found

Service configuration file

useMapserver

In order to activate the MapServer WMS/WEFS/WCS output for a specific service, the useMapserver
parameter must be added to the <Default> or <Supported> blocks of the Service services-zcfg. If
useMapserver=true, this means that the output result of the Service is a GDAL compatible datasource
and that you want it to be automatically published by MapServer as WMS,WES or WCS.

When the useMapserver option is used in a <Default> or <Supported> block, then you have to know
what are the corresponding mimeType:

¢ text/xml: Implies that the output data will be accessible through a WFS GetFeature request (default
protocol version 1.1.0)

30 Chapter 3. ZOO-Kernel

Z0OO0-Project Documentation, Release 1.5

e image/tiff: Implies that the output data will be accessible through a WCS GetCoverage request (de-
fault protocol version 2.0.0)

¢ any other mimeType coupled with useMapserver option: Implies that the output data will be acces-
sible through a WMS GetMap request (default protocol version 1.3.0). You can check the supported
output mimeType by sending a GetCapabilities request to MapServer.

You get the same optional parameter msOgcVersion as for the main. cfg. This will specify that this is the
specific protocol version the service want to use (so you may set also locally to service rather than globally).

Styling

The optional msStyle parameter can also be used to define a custom MapServer style block (used for
vector datasource only), as follow:

msStyle = STYLE COLOR 125 0 105 OUTLINECOLOR 0 O O WIDTH 3 END

If a WPS service outputs a one band raster file, then it is possible to add a msClassify parameter and set
it to true in the output ComplexData <Default> or <Supported> nodes of its zcfg file. This allows
Z0OO-Kernel to use its own default style definitions in order to classify the raster using equivalent intervals.

msClassify =

Example

An example ZOO-Service configuration file file configured for the optional MapServer support is shown
bellow:

<Default>

mimeType = text/xml

encoding = UTF-8

schema = http://schemas.opengis.net/gml/3.1.0/base/feature.xsd
useMapserver = true

</Default>
<Supported>

mimeType = image/png
useMapserver = true

asReference = true
msStyle = STYLE COLOR 125 0 105 OUTLINECOLOR 0 0 0O WIDTH 3 END

</Supported>

<Supported>

mimeType = application/vnd.google—earth.kmz
useMapserver = true

asReference = true

msStyle = STYLE COLOR 125 0 105 OUTLINECOLOR O O O WIDTH 3 END
</Supported>
<Supported>

mimeType = image/tif

useMapserver = true

asReference = true

msClassify =
</Supported>

In this example, the default output mimeType is image/png, so a WMS GetMap request will be returned,
or the resulting image/tiff will be returned as WCS GetCoverage request.

3.3. Optional MapServer support 31

Z0O0-Project Documentation, Release 1.5

3.3.3 Test requests

The optional MapServer support can be tested using any service. The simple HelloPy Service is used in the
following example requests.

Note: The following examples require a zip file containing a Shapefile (http://localhost/data/data.zip)
and a tif file (http:/ /localhost/data/demo.tif)

Accessing a remote Zipped Shapefile as WFS GetFeatures Request:

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0. O&IdentifierzHelloPyé

Accessing a remote Zipped Shapefile as WMS GetMap Request:

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0. O&IdentifierzHelloPyé

Accessing a remote tiff as WMS GetMap Request:

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0. O&IdentifierzHelloPyé

Accessing a remote tiff as WCS GetMap Request:

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0. O&Identifier=HelloPyé

3.4 Optional Orfeo Toolbox support

Orfeo Toolbox® provides simple to advanced algorithms for processing imagery available from remote
sensors. The optional Orfeo Toolbox support is available since ZOO-Project 1.5%. It allows to execute the
OTB Applications® directly as ZOO WPS Services thanks to a ZOO-Kernel specific internal mechanism
which is detailed in this section.

Note: % Orfeo Toolbox* is an open source image processing library. Learn more by reading its

documentation®.

3.4.1 Installation and configuration

Follow the step described bellow in order to activate the ZOO-Project optional Orfeo Toolbox support.

Prerequisites

e latest ZOO-Kernel® trunk version

¢ Orfeo Toolbox (OTB 4.2.1%7)

3Thttp:/ / orfeo-toolbox.org/otb /

32http:/ /zoo-project.org

33http: / / orfeo-toolbox.org/otb /otb-applications.html

34https: / /www.orfeo-toolbox.org

SBhttps:/ /www.orfeo-toolbox.org/documentation /

36http:/ / zoo-project.org/trac/browser / trunk/zoo-project /zoo-kernel
3http:/ / orfeo-toolbox.org/otb /

32 Chapter 3. ZOO-Kernel

http://localhost/data/data.zip
http://localhost/data/demo.tif
http://orfeo-toolbox.org/otb/
http://zoo-project.org
http://orfeo-toolbox.org/otb/otb-applications.html
https://www.orfeo-toolbox.org
https://www.orfeo-toolbox.org/documentation/
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
http://orfeo-toolbox.org/otb/

Z0OO0-Project Documentation, Release 1.5

¢ Insight Segmentation and Registration Toolkit (ITK-4.7%%)

Installation steps

Note: These installation steps were successfully tested on Ubuntu 14.4 LTS

Note: For OTB and ITK, the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS must first be set to —fPIC

Download lastest ZOO-Kernel code from SVN.

svn checkout http://svn.zoo-project.org/svn/trunk/zoo-kernel zoo-kernel

Then compile ZOO-Kernel using the needed configuration options as shown bellow:

cd zoo-kernel

autoconf

./configure --with-otb=/usr/local --with-itk=/usr/local --with-itk-version=4.7
make

cp zoo_loader.cgi /usr/lib/cgi-bin

Configuration steps

Main configuration file

Add the following content to your /usr/1lib/cgi-bin/main.cfg file in the [env] section:

ITK_AUTOLOAD_PATH=/usr/local/lib/otb/applications

Services configuration file

The build of the otb2zcfg® utility is required to activate the available OTB Applications as WPS services.
This can be done using the following command:

mkdir build
cd build
ccmake ..
make

Run the following command to generate all the needed zcfg files for the available OTB Application:

mkdir zcfgs

cd zcfgs

export ITK_AUTOLOAD_PATH=/your/path/to/otb/applications
../build/otb2zcfg

mkdir /location/to/your/cgi-bin/OTB

cp xzcfg /location/to/your/cgi-bin/0OTB

38http: / /itk.org/ITK/resources/software.html/
39http: / /zoo-project.org/trac/browser/trunk/thirds/otb2zcfg

3.4. Optional Orfeo Toolbox support 33

http://itk.org/ITK/resources/software.html/
http://zoo-project.org/trac/browser/trunk/thirds/otb2zcfg

Z0O0-Project Documentation, Release 1.5

Test requests

Once done, OTB Applications should be listed as available WPS Services when runing a GetCapabilities
request

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS ‘

Each OTB Service can then be described individually using the DescribeProcess request, as for example:

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=DescribeProcess&service=WPS&version=1.0 4 0&Identifier:

Here is an example request executing the OTB.BandMath Application with the OTB Cookbook*’ sample
data as input

‘ http://localhost/cgi-bin/zoo_loader.cgi?request=Executesservice=WPSs¢version=1.0. O&IdentifierZOTB . Ban«

Note: The usual ZOO GetStatus requests also work when using the OTB Applications as WPS Services.

3.5 Optional SAGA GIS support

SAGA GIS* provides a comprehensive set of geoscientific methods and spatial algorithms. The optional
SAGA GIS support is available since ZOO-Project 1.5*. It allows to execute the SAGA Modules* directly
as ZOO WPS Services thanks to a ZOO-Kernel specific internal mechanism which is detailed in this section.

Note: =" SAGA GIS* is the System for Automated Geoscientific Analyses. Learn more on official

3.5.1 Installation and configuration

Follow the step described bellow in order to activate the ZOO-Project optional SAGA GIS support.

Prerequisites

o latest ZOO-Kernel*® trunk version
e SAGA GIS (SAGA-GIS 2.1.4%7)
e JibLLAS-1.2 (Li‘bLAS—l.Z48)

40https: / /www.orfeo-toolbox.org/CookBook/CookBook.html
4http:/ / orfeo-toolbox.org/otb /

“http:/ /zoo-project.org

43http: //www.saga-gis.org/saga_module_doc/2.1.4/index.html
44https: / /www.orfeo-toolbox.org

45 http:/ /www.saga-gis.org/en/index.html

46http:/ / zoo-project.org/trac/browser / trunk /zoo-project /zoo-kernel
“http:/ /saga-gis.org

#Bhttps:/ /github.com/1libLAS/libLAS-1.2

34 Chapter 3. ZOO-Kernel

https://www.orfeo-toolbox.org/CookBook/CookBook.html
http://orfeo-toolbox.org/otb/
http://zoo-project.org
http://www.saga-gis.org/saga_module_doc/2.1.4/index.html
https://www.orfeo-toolbox.org
http://www.saga-gis.org/en/index.html
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
http://saga-gis.org
https://github.com/libLAS/libLAS-1.2

Z0OO0-Project Documentation, Release 1.5

Installation steps

Note: These installation steps were successfully tested on Ubuntu 14.4 LTS

Download lastest ZOO-Kernel code from SVN.

svn checkout http://svn.zoo-project.org/svn/trunk/zoo-kernel zoo-kernel

Then compile ZOO-Kernel using the needed configuration options as shown bellow:

cd zoo-kernel

autoconf

./configure --with-saga=/usr/local/
make

And copy the newly created zoo_loader.cgi to /usr/1ib/cgi-bin:

’cp zoo_loader.cgi /usr/lib/cgi-bin

Configuration steps

Services configuration file

Building the ‘saga2zcfg <http://zoo-project.org/trac/browser/trunk/thirds/otb2zcfg >’_ utility is required
to activate the available SAGA-GIS Modules as WPS Services. This can be done using the following com-
mand:

cd thirds/saga2zcfg
make

The following commands will then generate all the needed zcfg files for the available SAGA-GIS Modules:

mkdir zcfgs

cd zcfgs

../saga2zcfg

mkdir /location/to/your/cgi-bin/SAGA

cp xzcfg /location/to/your/cgi-bin/SAGA

Test requests

The SAGA-GIS Modules should be listed as available WPS Services when runing a GetCapabilities request,
as follow:

http:/ /localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

Each SAGA-GIS Service can then be described individually using the DescribeProcess request, as for exam-
ple:
http:/ /localhost/ cgi-bin/zoo_loader.cgi?request=DescribeProcessé&service=WPS&version=1.0.0&Identifier=SAGA.garden

And executed according to your needs. The following example executes SAGA.garden_fractals.1 with no
optional parameter:

http:/ /localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&lIdentifier=SAGA.garden_fractals

Note: The common ZOO GetStatus requests also work when using the SAGA-GIS Modules as WPS Ser-
vices.

3.5. Optional SAGA GIS support 35

http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS
http://localhost/cgi-bin/zoo_loader.cgi?request=DescribeProcess&service=WPS&version=1.0.0&Identifier=SAGA.garden_fractals.1
http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=SAGA.garden_fractals.1&DataInputs=&ResponseDocument=RESULT@mimeType=application/json@asReference=true

Z0OO0-Project Documentation, Release 1.5

36 Chapter 3. ZOO-Kernel

CHAPTER
FOUR

ZOO-SERVICES

This section will guide you for creating your own WPS Services using the ZOO-Project! platform. It also
gives usefull information for taking advantage of the ready-to-use ZOO-Services which are available in the
ZOO-Project svn.

4.1 What are ZOO-Services ?

ZOO-Services are WPS compliant Web Services working with ZOO-Kernel, the ZOO-Project> WPS server.

4.1.1 What is a ZOO-Service?

A ZOO0 Service is a couple composed of:
* Source code you want to create or reuse as WPS Service
o A configuration file (.zcfg) which describes this WPS Service

Learn how to create your own and how to configure ZOO-Services according to the ZCFG Reference.

4.1.2 Available ZOO-Services

ZOO-Project’ includes ready-to-use WPS Services based on reliable open source libraries such as GDAL?,
GRASS GIS°, OrfeoToolbox® and CGAL’. The so-called ZOO-Services aim at reusing existing geospatial
algorithms through standard WPS, with no or minor modification of the involved software or library source
codes.

Available ZOO-Services provide a number of significant examples to build your own.

4.2 ZO0O-Service configuration file

The ZOO-Service configuration file (.zcfg) describes a WPS service. It provides metadata information on a
particular WPS Service and it is parsed by ZOO-Kernel when DescribeProcess and Execute request are sent.

Thttp:/ /zoo-project.org
Zhttp:/ /zoo-project.org
Shttp:/ /zoo-project.org
4http://gdal.org

Shttp:/ / grass.osgeoorg
6http: / / orfeo-toolbox.org
"http:/ /gcal.org

37

http://zoo-project.org
http://zoo-project.org
http://zoo-project.org
http://gdal.org
http://grass.osgeoorg
http://orfeo-toolbox.org
http://gcal.org

Z0OO0-Project Documentation, Release 1.5

The ZOO-Service configuration file is divided into three distinct sections :
¢ Main Metadata information
e List of Inputs metadata information (optional since rev. 469°)

e List of Outputs metadata information

Warning: The ZOO-Service configuration file is case sensitive.

Note: There are many example ZCFG files in the cgi-env directory of the ZOO-Project svn’.

Note: A ZCFG file can be converted to the YAML syntaxe by using the zcfg2yaml command line tool.

4.2.1 Main section
The fist part of the ZOO-Service configuration file is the main section, which contains general metadata
information on the related WPS Service.

Note that the “name of your service” between brackets on the first line has to be the exact same name as the
function you defined in your services provider code. In most cases, this name is also the name of the ZCFG
file without the “. zc£g” extension.

An example of the main section is given bellow as reference.

[Name of WPS Service]
Title = Title of the WPS Service
Abstract = Description of the WPS Service
processVersion = Version number of the WPS Service
storeSupported = true/false
statusSupported = true/false
serviceType = Pprogramming language used to implement the service (C|Fortran|Python]|Java|PHP|Ruby|Ja
serviceProvider = Name of the Services provider (shared library|Python Module|Java Classg|PHP Script]|.
<MetaData>

title = Metadata title of the WPS Service
</MetaData>

Warning: ‘Name of WPS Service’ must be the exact same name as the function defined in the WPS
Service source code.

Note: An extend parameter may be used for the Process profile registry.

4.2.2 List of Inputs
The second part of the ZOO-Service configuration file is the <DataInputs> section which lists the sup-
ported inputs. Each input is defined as :

e Name (between brackets as for the name of the service before)

® Various medata properties (Title, Abstract, minOccurs, maxOccurs and, in case of Complex-
Data, the optional maximumMegabytes)

8http: / /zoo-project.org/trac/changeset/469
9http: / / zoo-project.org/trac/browser/trunk/zoo-project/ zoo-services

38 Chapter 4. ZOO-Services

http://zoo-project.org/trac/changeset/469
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services

Z0OO0-Project Documentation, Release 1.5

e Type Of Data Node
A typical list of inputs (<DataInputs>) looks like the following:

<DatalInputs>

[Name of the first input]
Title = Title of the first input
Abstract = Abstract describing the first input
minOccurs = Minimum occurence of the first input
maxOccurs = Maximum occurence of the first input
<Type Of Data Node />

[Name of the second input]
Title = Title of the second input
Abstract = Abstract describing the second input

minOccurs = Minimum occurence of the second input
maxOccurs = Maximum occurence of the second input
<Type Of Data Node />

</DatalInputs>

Note: A <MetaData> node can also be added, as in the main metadata information.

4.2.3 List of Outputs

The third part of the ZOO Service configuration file is the <DataOutputs> section, which lists the sup-
ported outputs and is is very similar to a list of inputs.

A typical list of outputs (<DataOutputs>) looks like the following:

<DataOutputs>
[Name of the output]
Title = Title of the output
Abstract = Description of the output
<Type Of Data Node />
</DataOutputs>

4.2.4 Type Of Data Nodes
The Type Of Data Nodes describes data types for inputs and outputs. There are three different types which
are described in this section.

e LiteralData

* BoundingBoxData

* ComplexData

Warning: Every BoundingBoxData and ComplexData must have at least one <Default>node
(even empty like <Default />)

Warning: In WPS 2.0.0 version, it is possible to define nested inputs and outputs”. So, from
revision 790", you are allowed to use a new input/output definition here.

http:/ /docs.opengeospatial.org/is/14-065/14-065.html#13
Phttp:/ /www.zoo-project.org/ trac/ changeset/790

4.2. ZOO-Service configuration file 39

http://docs.opengeospatial.org/is/14-065/14-065.html#13
http://www.zoo-project.org/trac/changeset/790

O ® N G R W N e

N G R W N =

Z0OO0-Project Documentation, Release 1.5

LiteralData node

A <LiteralData> node contains:
* one (optional) AllowedValues key containing all value allowed for this input
* one (optional) range properties containing the range ([, 1)

* one (optional) rangeMin (rangeMax) properties containing the minimum (maximum) value of this
range

* one (optional) rangeSpacing properties containing the regular distance or spacing between value
in this range

* one (optional) rangeClosure properties containing the closure type (c, o, oc, co)
® one <Default> node,

® zero or more <Supported> nodes depending on the existence or the number of supported Units Of
Measure (UOM), and

* a dataType property. The dataType property defines the type of literal data, such as a string, an
interger and so on (consult the complete list' of supported data types).

<Default> and <Supported> nodes can contain the uom property to define which UOM has to be used
for this input value.

For input <LiteralData> nodes, you can add the value property to the <Default> node to define
a default value for this input. This means that, when your Service will be run, even if the input wasn’t
defined, this default value will be set as the current value for this input.

A typical <LiteralData> node, defining a float data type using meters or degrees for its UOM, looks
like the following:

<LiteralData>
dataType = float
<Default>
uom = meters
</Default>
<Supported>
uom = feet
</Supported>
</LiteralData>

A typical <LiteralData> node, defining a float data type which should take values contained in
[0.0,100.0], looks like the following:

<LiteralData>
dataType = float
rangeMin = 0.0
rangeMax = 100.0
rangeClosure = cC
<Default />

</LiteralData>

Or more simply:

<LiteralData>
dataType = float
range = [0.0,100.0]

Ohttp:/ /www.w3.org/TR/xmlschema-2/#built-in-datatypes

40 Chapter 4. ZOO-Services

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

Z0OO0-Project Documentation, Release 1.5

<Default />
</LiteralData>

A typical <LiteralData> node, defining a st ring data type which support values hillshade, slope,
aspect, TRI, TPI and roughness, looks like the following;:

<LiteralData>
dataType = string
AllowedValues = hillshade, slope, aspect, TRI,TPI, roughness
<Default />

</LiteralData>

Properties Al1owedValues and range can be conbined with both <Default> and <Supported> nodes
in the same was as <LiteralData> node. For instance, the following is supported:

<LiteralData>

dataType = int

<Default>
value = 11
AllowedValues = -10,-8,-7,-5,-1
rangeMin = 0
rangeMin = 100
rangeClosure = co

</Default>

<Supported>

rangeMin = 200
rangeMin = 600
rangeClosure = co
</Supported>
<Supported>
rangeMin = 750
rangeMin = 990

rangeClosure = co

rangeSpacing = 10
</Supported>
</LiteralData>

BoundingBoxData node

A <BoundingBoxData> node contains:

® one <Default> node with a CRS property defining the default Coordinate Reference Systems (CRS),
and

* one or more <Supported> nodes depending on the number of CRS your service supports (note that
you can alternatively use a single <Supported> node with a comma-separated list of supported
CRS).

A typical <BoundingBoxData> node, for two supported CRS (EPSG:4326'! and EPSG:3785'%), looks like
the following:

<BoundingBoxData>
<Default>
CRS = urn:ogc:def:crs:EPSG:6.6:4326
</Default>
<Supported>

Whttp:/ /www.epsg-registry.org/indicio / query?request=GetRepositoryltem&id=urn:ogc:def:crs:EPSG::4326
http:/ /www.epsg-registry.org/indicio/ query?request=GetRepositoryltem&id=urn:ogc:def:crs:EPSG::3785

4.2. ZOO-Service configuration file 41

http://www.epsg-registry.org/indicio/query?request=GetRepositoryItem&id=urn:ogc:def:crs:EPSG::4326
http://www.epsg-registry.org/indicio/query?request=GetRepositoryItem&id=urn:ogc:def:crs:EPSG::3785

Z0OO0-Project Documentation, Release 1.5

CRS = urn:ogc:def:crs:EPSG:6.6:4326
</Supported>
<Supported>
CRS = urn:ogc:def:crs:EPSG:6.6:3785
</Supported>
</BoundingBoxData>

ComplexData node

A ComplexData node contains:
® a <Default>node and

* one or more <Supported> nodes depending on the number of supported formats. A format is made
up of this set of properties : mimeType, encoding and optionaly schema.

For output ComplexData nodes, you can add the extension property to define what extension to use to
name the file when storing the result is required. Obviously, you'll have to add the extension property
to each supported format (for the <Default> and <Supported> nodes).

You can also add the asReference property to the <Default> node to define if the output should be
stored on server side per default.

Note: the client can always modify this behavior by setting asReference attribute to t rue or false for
this output in the request ResponseDocument parameter.

You can see below a sample ComplexData node for default application/json and text/xml (encoded
in UTF-8 or base64) mimeTypes support:

<ComplexData>
<Default>
mimeType = application/json
encoding = UTF-8
</Default>
<Supported>
mimeType = text/xml
encoding = base64
schema = http://fooa/gml/3.1.0/polygon.xsd
</Supported>
<Supported>
mimeType = text/xml
encoding = UTF-8
schema = http://fooa/gml/3.1.0/polygon.xsd
</Supported>
</ComplexData>

4.3 Process profiles registry